
COP 4710: Database Systems  (Normalization)              Page 1 Mark Llewellyn ©

COP 4710: Database Systems
Spring 2006

Chapter 19 – Normalization – Part 3

COP 4710: Database Systems
Spring 2006

Chapter 19 – Normalization – Part 3

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2006



COP 4710: Database Systems  (Normalization)              Page 2 Mark Llewellyn ©

Let R = (C, S, Z)
F = {CS →Z, Z→C}
D = {(SZ), (CZ)}

G = F[SZ] ∪ F[CZ] Z = Z ∪ ((Z ∩ Ri)+ ∩ Ri)

Test for each fd in F.
Test for CS→Z

Z = CS, 
= {CS} ∪ ((CS ∩ SZ)+ ∩ SZ)
= {CS} ∪ ((S)+ ∩ SZ)
= {CS} ∪ (S)
= {CS}
= {CS} ∪ ((CS ∩ CZ)+ ∩ CZ)
= {CS} ∪ ((C)+ ∩ CZ)
= {CS} ∪ (C ∩ CZ)
= {CS} ∪ (C)
= {CS} thus, CS →Z is not preserved.

Practice Problem Solution



COP 4710: Database Systems  (Normalization)              Page 3 Mark Llewellyn ©

Algorithm #1 for Producing a 3NF Decomposition

Algorithm 3NF.1
// input: a relation schema R= (A1, A2, …, An),   a set of fds F, a set of candidate keys K.
// output:  a 3NF decomposition of R, called D, which has the lossless join property and the
//              functional dependencies are preserved.

3NF.1 (R, F, K)
a = 0;
for each fd X → Y in F do

a = a +1;
Ra = XY;

endfor
if [none of the schemes Rb (1 ≤ b ≤ a) contains a candidate key of R] then

a = a + 1;
Ra = any candidate key of R

endif
if [                     ] then   //there are missing attributes 

Ra+1 = 
return D = {R1, R2, ..., Ra+1}

end.

RRa
1b b ≠=U

U
a

1b bRR =−



COP 4710: Database Systems  (Normalization)              Page 4 Mark Llewellyn ©

Let R = (A, B, C, D, E)
K = {AB, AC}
F = {AB→CDE, AC→BDE, B→C, C→B, C→D, B→E}

Step 1: D = {(ABCDE), (ACBDE), (BC), (CB), (CD), (BE)}

Reduce to: D = {(ABCDE), (BC), (CD), (BE)}

Step 2: Does D contain a candidate key for R?  
Yes, in (ABCDE)

Step 3: Are all the attributes of R contained in D?
Yes.

Return D as: {(ABCDE), (BC), (CD), (BE)}

Example – Using Algorithm 3NF.1



COP 4710: Database Systems  (Normalization)              Page 5 Mark Llewellyn ©

Algorithm #2 for Producing a 3NF Decomposition

Algorithm 3NF.2
// input: a relation schema R= (A1, A2, …, An),   a set of fds F, a set of candidate keys K.
// output:  a 3NF decomposition of R, called D, which is not guaranteed to have either the
//              lossless join property or to preserve the functional dependencies in F.
//  This algorithm is based on the removal of transitive dependencies.

3NF.2 (R, F, K)
do

if [K → Y → A where A is non-prime and not an element of either K or Y] then
decompose R into:  R1 = {R – A} with K1 = {K} and R2 = {YA} with K2 = {Y}.

repeat until no transitive dependencies exist in any schema
D =  union of all 3NF schemas produced above.
test for lossless join
test for preservation of the functional dependencies

end.



COP 4710: Database Systems  (Normalization)              Page 6 Mark Llewellyn ©

Let R = (A, B, C, D, E)
K = {AB, AC}
F = {AB→CDE, AC→BDE, B→C, C→B, C→D, B→E}

Step 1: R not in 3NF since AB → C → D
Decompose to:  R1 = (A, B, C, E) with K1 = K = {AB, AC}

R2 = (C, D) with K2 = {C}

Step 2: R2 in 3NF.   R1 not in 3NF since AB → B → E 
Decompose R1 to:  R11 = (A, B, C) with K11= K1 = K = {AB, AC}

R12 = (B, E) with K12 = {B}

Step 3: R2, R11, and R12 are all in 3NF

Step 4: Test for the lossless join property (see next page).

Example – Using Algorithm 3NF.2



COP 4710: Database Systems  (Normalization)              Page 7 Mark Llewellyn ©

AB→CDE: (1st time: equates nothing)
AC→BDE: (1st time: equates nothing)
B→C: (1st time: equates a3 & b33)
C→B: (1st time: equates a2 & b12)
C→D: (1st time: equates b14, b24, b34) – stop second row becomes all a’s
B→E: (1st time: equates a5, b15, b25)

Decomposition has the lossless join property.

Step 4: Checking for a Lossless Join in the Decomposition

a5a4a3a2b31(BE)

b15a4a3a2a1(ABC)

b15a4a3a2b11(CD)

EDCBA



COP 4710: Database Systems  (Normalization)              Page 8 Mark Llewellyn ©

Let R = (A, B, C, D, E)
F = {AB→CDE, AC→BDE, B→C, C→B, C→D, B→E}}
D = {(CD), (ABC), (BE)}

G = F[CD] ∪ F[ABC] ∪ F[BE] Z = Z ∪ ((Z ∩ Ri)+ ∩ Ri)
Test for AB→CDE

Z = AB, 
= {AB} ∪ ((AB ∩ CD)+ ∩ CD)
= {AB} ∪ ((∅)+ ∩ CD)
= {AB} ∪ (∅ ∩ CD)
= {AB} ∪ (∅)
= {AB}
= {AB} ∪ ((AB ∩ ABC)+ ∩ ABC)
= {AB} ∪ ((AB)+ ∩ ABC)
= {AB} ∪ (ABCDE ∩ ABC)
= {AB} ∪ (ABC)
= {ABC}
= {ABC} ∪ ((ABC ∩ BE)+ ∩ BE)
= {ABC} ∪ ((B)+ ∩ BE)
= {ABC} ∪ (BCDE ∩ BE)
= {ABC} ∪ (BE)
= {ABCE}

Step 5: Testing the Preservation of the Functional Dependencies



COP 4710: Database Systems  (Normalization)              Page 9 Mark Llewellyn ©

Test for AB→CDE continues
Z = {ABCE} ∪ ((ABCE ∩ CD)+ ∩ CD)

= {ABCE} ∪ ((C)+ ∩ CD)
= {ABCE} ∪ (CBDE ∩ CD)
= {ABCE} ∪ (CD)
= {ABCDE} thus, AB→CDE is preserved

Test for AC→BDE 
Z = AC

= {AC} ∪ ((AC ∩ CD)+ ∩ CD)
= {AC} ∪ ((C)+ ∩ CD)
= {AC} ∪ (CBDE ∩ CD)
= {AC} ∪ (CD)
= {ACD}
= {ACD} ∪ ((ACD ∩ ABC)+ ∩ ABC)
= {ACD} ∪ ((AC)+ ∩ ABC)
= {ACD} ∪ (ACBDE ∩ ABC)
= {ACD} ∪ (ABC)
= {ABCD}

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)



COP 4710: Database Systems  (Normalization)              Page 10 Mark Llewellyn ©

Test for AC→BDE continues
Z = {ABCD} ∪ ((ABCD ∩ BE)+ ∩ BE)

= {ABCD} ∪ ((B)+ ∩ BE)
= {ABCD} ∪ (BCDE ∩ BE)
= {ABCD} ∪ (BE)
= {ABCDE} thus, AC→BDE is preserved

Test for B→C 
Z = B

= {B} ∪ ((B ∩ CD)+ ∩ CD)
= {B} ∪ ((C)+ ∩ CD)
= {B} ∪ (CBDE ∩ CD)
= {B} ∪ (CD)
= {BCD} thus B→C is preserved

Test for C→B 
Z = C

= {C} ∪ ((C ∩ CD)+ ∩ CD)
= {C} ∪ ((C)+ ∩ CD)
= {C} ∪ (CBDE ∩ CD)
= {C} ∪ (CD)
= {CD}

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)



COP 4710: Database Systems  (Normalization)              Page 11 Mark Llewellyn ©

Test for C→B continues
Z = {CD} ∪ ((CD ∩ ABC)+ ∩ ABC)

= {CD} ∪ ((C)+ ∩ ABC)
= {CD} ∪ (CBDE ∩ ABC)
= {CD} ∪ (BC)
= {BCD} thus, C→B is preserved

Test for C→D 
Z = C

= {C} ∪ ((C ∩ CD)+ ∩ CD)
= {C} ∪ ((C)+ ∩ CD)
= {C} ∪ (CBDE ∩ CD)
= {C} ∪ (CD)
= {CD} thus C→D is preserved

Test for B→E 
Z = B

= {B} ∪ ((B ∩ CD)+ ∩ CD)
= {B} ∪ ((∅)+ ∩ CD)
= {B} ∪ (∅)
= {B}

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)



COP 4710: Database Systems  (Normalization)              Page 12 Mark Llewellyn ©

Test for B→E continues
Z = {B} ∪ ((B ∩ ABC)+ ∩ ABC)

= {B} ∪ ((B)+ ∩ ABC)
= {B} ∪ (BCDE ∩ ABC)
= {BC} ∪ (BC)
= {BC}

Z = {BC}
= {BC} ∪ ((BC ∩ ABC)+ ∩ ABC)
= {BC} ∪ ((C)+ ∩ ABC)
= {BC} ∪ (CBDE ∩ ABC)
= {BC} ∪ (BC)
= {BC}

Z = {BC}
= {BC} ∪ ((BC ∩ BE)+ ∩ BE)
= {BC} ∪ ((B)+ ∩ BE)
= {BC} ∪ (BCDE ∩ BE)
= {BC} ∪ (BE)
= {BCE} thus, B →E is preserved.

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)



COP 4710: Database Systems  (Normalization)              Page 13 Mark Llewellyn ©

• Why would you use algorithm 3NF.2 rather than 
algorithm 3NF.1 when you know that algorithm 3NF.1 
will guarantee that both the lossless join property and the 
preservation of the functional dependencies?

• The answer is that algorithm 3NF.2 will typically 
produce fewer relational schemas than will algorithm 
3NF.1.  Although both the lossless join and dependency 
preservation properties must be independently tested 
when using algorithm 3NF.2.

Why Use 3NF.2 Rather Than 3NF.1



COP 4710: Database Systems  (Normalization)              Page 14 Mark Llewellyn ©

Algorithm #3 for Producing a 3NF Decomposition

Algorithm 3NF.3
// input: a relation schema R= (A1, A2, …, An),   a set of fds F.
// output:  a 3NF decomposition of R, called D, which is guaranteed to have both the
//              lossless join property and to preserve the functional dependencies in F.
//  This algorithm is based on the a minimal cover for F (see Chapter 19 – Part 1, page 45).

3NF.3 (R, F)
find a minimal cover for F, call this cover G (see Chapter 19 - Part 1 page 45 for algorithm)
for each determinant X that appears in G do

create a relation schema { X ∪ A1 ∪ A2 ∪ ... ∪ Am} where Ai (1 ≤ i ≤ m) represents
all the consequents of fds in G with determinant X.

place all remaining attributes, if any, in a single schema.
if none of the schemas  contains a key for R, create an additional schema which 

contains any candidate key for R.
end.



COP 4710: Database Systems  (Normalization)              Page 15 Mark Llewellyn ©

• Algorithm 3NF.3 is very similar to algorithm 3NF.1, 
differing only in how the schemas of the decomposition 
scheme are created.  

– In algorithm 3NF.1, the schemas are created directly from F.

– In algorithm 3NF.3, the schemas are created from a minimal 
cover for F.

• In general, algorithm 3NF.3 should generate fewer 
relation schemas than algorithm 3NF.1.

Algorithm 3NF.3



COP 4710: Database Systems  (Normalization)              Page 16 Mark Llewellyn ©

• The algorithm given on page 31 of Chapter 19 – Part 2 notes for 
testing the preservation of a set of functional dependencies on a 
decomposition scheme is fairly efficient for computation, but 
somewhat tedious to do by hand.

• On the next page is an example solving the same problem that we did 
in the example on page 33 of Chapter 19 – Part 2, utilizing a 
different technique which is based on the concept of covers.

• Given D, R, and F, if D = {R1, R2, ..., Rn) then 

G = F[R1] ∪ F[R2] ∪ F[R3] ∪ ... ∪ F[Rn] and if every 

functional dependency in F is implied by G, then G covers F.

• The technique is to generate that portion of G+ that allows us to 
know if G covers F.

Another Technique for Testing the 
Preservation of Dependencies



COP 4710: Database Systems  (Normalization)              Page 17 Mark Llewellyn ©

Let R = (A, B, C, D) 
F = {A→B, B→C, C→D, D→A}

D = {(AB), (BC), (CD)}

G = F[AB] ∪ F[BC] ∪ F[CD]

Projection onto schema (AB)
F[AB] = A+ ∪ B+ ∪ (AB)+

= {ABCD} ∪ {ABCD} ∪ {ABCD}
apply projection: =  {AB} ∪ {AB} ∪ {AB} = {AB}, A→B is covered

Projection onto schema (BC)
F[BC] = B+ ∪ C+ ∪ (BC)+

= {BCDA} ∪ {CDAB} ∪ {BCDA}
apply projection: =  {BC} ∪ {BC} ∪ {BC} = {BC}, C→C is covered

A Hugmongously Big Example Using Different Technique



COP 4710: Database Systems  (Normalization)              Page 18 Mark Llewellyn ©

Projection onto schema (CD)
F[CD] = C+ ∪ D+ ∪ (CD)+

= {CDAB} ∪ {DABC} ∪ {CDAB}
apply projection: =  {CD} ∪ {CD} ∪ {CD} = {CD}, C→D is covered

• Thus, the projections have covered every functional dependency in F 
except D → A.  So, now the question becomes does G logically 
imply D → A?

• Generate D+(with respect to G) and if A is in this closure the answer 
is yes.

Therefore, G ⊨ D → A

A Hugmongously Big Example Using Different Technique
(cont.)

}A,B,C,D{DG =+



COP 4710: Database Systems  (Normalization)              Page 19 Mark Llewellyn ©

• Functional dependencies are the most common and important type of 
constraint in relational database design theory.

• However, there are situations in which the constraints that hold on a 
relation cannot be expressed as a functional dependency.

• Multi-valued dependencies are related to 1NF.  Recall that 1NF 
simply means that all attribute values in a relation are atomic, which 
means that a tuple cannot have a set of values for some particular 
attribute.

• If we have a situation in which two or more multi-valued 
independent attributes appear in the same relation schema, then we’ll 
need to repeat every value of one of the attributes with every value of 
the other attribute to keep the relation instance consistent and to 
maintain the independence among the attributes involved.

• Basically, whenever two independent 1:M relationships A:B and A:C 
occur in the same relation, a multi-valued dependency may occur.

Multi-valued Dependencies and Fourth Normal Form



COP 4710: Database Systems  (Normalization)              Page 20 Mark Llewellyn ©

• Consider the following situation of a N1NF relation.

Multi-valued Dependencies (cont.)

Mercedes E500
Porsche Carrera

Mercedes E320
Ford F350

vehicles

COP 3330
CDA 3103
COT 4810

COP 4710
COP 4610

classes

Kristy

Mark

name



COP 4710: Database Systems  (Normalization)              Page 21 Mark Llewellyn ©

• Converting the  N1NF relation to a 1NF relation.

Multi-valued Dependencies (cont.)

Porsche CarreraCOP 3330Kristy

Porsche CarreraCDA 3103Kristy

Porsche CarreraCOT 4810Kristy

Mercedes E500COT 4810Kristy

Mercedes E500COP 3330Kristy
Ford F350COP 4610Mark

Ford F350COP 4710Mark

Mercedes E500 

Mercedes E320

Mercedes E320

vehicles

CDA 3103

COP 4610

COP 4710

classes

Kristy

Mark 

Mark

name



COP 4710: Database Systems  (Normalization)              Page 22 Mark Llewellyn ©

• Basically, a multi-valued dependency is an assertion that 
two attributes or sets of attributes are independent of one 
another.

• This is a generalization of the notion of a functional 
dependency, in the sense that every fd implies a 
corresponding multi-valued dependency.

• However, there are certain situations involving 
independence of attributes that cannot be explained as 
functional dependencies.

• There are situations in which a relational schema may be 
in BCNF, yet the relation exhibits a kind of redundancy 
that is not related to functional dependencies.

Multi-valued Dependencies (cont.)



COP 4710: Database Systems  (Normalization)              Page 23 Mark Llewellyn ©

• The most common source of redundancy in BCNF 
schemas is an attempt to put two or more M:M 
relationships in a single relation.

Multi-valued Dependencies (cont.)

Milan

Milan

Milan

Milan

Milan

Milan

Orlando

Orlando

Orlando

Orlando

city

Ford F350COP 3502Kristy

Ford F350CDA 3103Kristy

Ford F350COT 4810Kristy

Mercedes E500COT 4810Kristy

Mercedes E500COP 3502Kristy

Ford F350COP 4610Mark

Ford F350COP 4710Mark

Mercedes E500 

Mercedes E320

Mercedes E320

vehicles

CDA 3103

COP 4610

COP 4710

classes

Kristy

Mark 

Mark

name



COP 4710: Database Systems  (Normalization)              Page 24 Mark Llewellyn ©

• Focusing on the relation on the previous page, notice that 
there is no reason to associate a given class with a given 
vehicle and not another vehicle.

• To express the fact that classes and vehicles are 
independent properties of a person, we have each class 
appear with each class.

• Clearly, there is redundancy in this relation, but this 
relation does not violate BCNF.  In fact there are no non-
trivial functional dependencies at all in this schema.

• We know from our earlier discussions of normal forms 
based on functional dependencies that redundancies were 
removed, yet here is a schema in BCNF that clearly 
contains redundant information.

Multi-valued Dependencies (cont.)



COP 4710: Database Systems  (Normalization)              Page 25 Mark Llewellyn ©

• For example, in this relation, attribute city is not 
functionally determined by any of the other three 
attributes.

• Thus the fd: name  class vehicle → city does not hold 
for this schema because we could have two persons with 
the same name, enrolled in the same class, and drive the 
same type of vehicle.

• You should verify that none of the four attributes in 
functionally determined by the other three.  Which means 
that there are no non-trivial functional dependencies that 
hold on this relation schema.

• Thus, all four attributes form the only key and this means 
that the relation is in BCNF, yet clearly is redundant.

Multi-valued Dependencies (cont.)



COP 4710: Database Systems  (Normalization)              Page 26 Mark Llewellyn ©

• A multi-valued dependency (mvd) is a statement about some 
relation R that when you fix the values for one set of attributes, 
then the values in certain other attributes are independent of the 
values of all the other attributes in the relation.

• More precisely, we have the mvd

A1A2...An ↠ B1B2...Bm

holds for a relation R if when we restrict ourselves to the tuples 
of R that have particular values for each of the attributes among 
the A’s, then the set of values we find among the B’s is 
independent of the set of values we find among the attributes of
R that are not among the A’s or B’s.

Multi-valued Dependencies (cont.)



COP 4710: Database Systems  (Normalization)              Page 27 Mark Llewellyn ©

• Even more precisely, a mvd holds if:

For each pair of tuples t and u of relation R that agree on 
all the A’s, we can find in R some tuple v that agrees:

1. With both t and u on the A’s

2. With t on the B’s

3. With u on all attributes of R that are not among the A’s or B’s.

– Note that we can use this rule with t and u interchanged, to infer 
the existence of a fourth tuple w that agrees with u on the B’s 
and with t on the other attributes.  As a consequence, for any 
fixed values of the A’s, the associated values of the B’s and the 
other attributes appear in all possible combinations in different 
tuples.

Multi-valued Dependencies (cont.)



COP 4710: Database Systems  (Normalization)              Page 28 Mark Llewellyn ©

Relationship of Tuple v to Tuple t When mvd Exists

a1 b1 c1

a1 b1 c2

a1 b2 c2

A’s B’s others

tuple t

tuple v

tuple u

A multi-valued dependency guarantees that tuple v exists



COP 4710: Database Systems  (Normalization)              Page 29 Mark Llewellyn ©

• In general, we can assume that the A’s and B’s (left side 
and right side) of a mvd are disjoint.

• As with functional dependencies, it is permissible to add 
some of the A’s to the right side.

• Unlike, functional dependencies where a set of attributes 
on the right side was a short-hand notation for a set of fds 
with single attribute right sides, with mvds, we must deal 
only with sets of attributes on the right side as it is not 
always possible to break the right side of mvds into 
single attributes.

Multi-valued Dependencies (cont.)



COP 4710: Database Systems  (Normalization)              Page 30 Mark Llewellyn ©

• Consider the following relation instance.

• The mvd   name ↠ street city holds on this relation.

– That is, for each star’s name, the set of addresses appears in conjunction 
with each of the star’s movies.

Example: Multi-valued Dependencies

5 Locust Lane

123 Maple Street

5 Locust Lane

123 Maple Street

5 Locust Lane

123 Maple Street

street

Malibu

Hollywood

Malibu

Hollywood

Malibu

Hollywood

city

1983Return of the JediC. Fisher

1980Empire Strikes BackC. Fisher

1977Star WarsC. Fisher

1983

1980

1977

year

Return of the Jedi

Empire Strikes Back

Star Wars

title

C. Fisher

C. Fisher

C. Fisher

name



COP 4710: Database Systems  (Normalization)              Page 31 Mark Llewellyn ©

• For an example of how the formal definition of this mvd applies,
consider the first and fourth tuples from the previous relation 
instance.

• If we let the first tuple be t and the second tuple be u, then the mvd 
asserts that we must also find in R the tuple that has name C. Fisher, 
a street and city that agree with the first tuple, and other attributes 
(title and year) that agree with the second tuple.  There is indeed such 
a tuple (the third tuple in the original instance).

Example: Multi-valued Dependencies (cont.)

5 Locust Lane

123 Maple Street

street

Malibu

Hollywood

city

1980Empire Strikes BackC. Fisher

1977

year
Star Wars

title
C. Fisher

name

123 Maple Street

street
Hollywood

city
1980

year
Empire Strikes Back

title
C. Fisher

name



COP 4710: Database Systems  (Normalization)              Page 32 Mark Llewellyn ©

• Similarly, we could let t be the second tuple below and u be the first 
tuple below (reversed from the previous page).  Then the mvd tells 
us that there is a tuple of R that agrees with the second tuple in 
attributes name, street, and city with the first tuple in attributes 
name, title, and year.

• There is indeed such a tuple (the second tuple in the original 
instance).

Example: Multi-valued Dependencies (cont.)

5 Locust Lane

123 Maple Street

street

Malibu

Hollywood

city

1980Empire Strikes BackC. Fisher

1977

year
Star Wars

title
C. Fisher

name

5 Locust Lane

street
Malibu

city
1977Star WarsC. Fisher

yeartitlename



COP 4710: Database Systems  (Normalization)              Page 33 Mark Llewellyn ©

• There are a number of inference rules that deal with mvds 
that are similar to the inference rules for functional 
dependencies.

1. Trivial multi-valued dependencies:

If A1A2...An ↠ B1B2...Bm holds for some relation, then 
so does A1A2...An↠ C1C2...Ck where the C’s are the B’s 
plus one or more of the A’s.

Conversely, we can also remove attributes from the B’s if 
they are among the A’s and infer the mvd A1A2...An ↠
D1D2...Dr if the D’s are those B’s that are not among the 
A’s.

Reasoning about Multi-valued Dependencies



COP 4710: Database Systems  (Normalization)              Page 34 Mark Llewellyn ©

2. Transitive rule for multi-valued dependencies:

If A1A2...An ↠ B1B2...Bm and B1B2...Bm ↠ C1C2...Ck 

both hold for some relation, then so does A1A2...An ↠
C1C2...Ck.  However, any C’s that are also B’s must be 
deleted from the right side.

• mvds do not obey the additivity/projectivity rules as do 
functional dependencies.

Reasoning about Multi-valued Dependencies



COP 4710: Database Systems  (Normalization)              Page 35 Mark Llewellyn ©

• Consider the same relation schema as before, where the 
mvd name ↠ street city held.  If the projectivity 
(splitting) rule held we would expect that

name ↠ street  would also be true.  This mvd states 
that each star’s street addresses are independent of the 
other attributes (including city).  However, that statement 
is false.  The first two tuples in the relation instance 
indicate that this is not true.

Reasoning about Multi-valued Dependencies

5 Locust Lane

123 Maple Street

street

Malibu

Hollywood

city

1977Star WarsC. Fisher

1977

year
Star Wars

title
C. Fisher

name



COP 4710: Database Systems  (Normalization)              Page 36 Mark Llewellyn ©

• This hypothetical mvd name ↠ street, if it held would 
allow us to infer that the tuples with the streets 
interchanged would be in the relation instance.  However, 
these tuples are not there because the home at 5 Locust 
Lane is in Malibu and not Hollywood.   

Reasoning about Multi-valued Dependencies

123 Maple Street

5 Locust Lane

street

Malibu

Hollywood

city

1977Star WarsC. Fisher

1977

year
Star Wars

title
C. Fisher

name

invalid tuples that cannot exist



COP 4710: Database Systems  (Normalization)              Page 37 Mark Llewellyn ©

• There are however, several new inference rules that apply only to 
multi-valued dependencies.

• First, every fd is a mvd.  That is, if A1A2...An → B1B2...Bm holds for 
some relation, then so does A1A2...An↠ B1B2...Bm hold.

• Second, complementation has no fd counterpart. The 
complementation rule states: if A1A2...An ↠ B1B2...Bm is a mvd that 
holds on some relation R, then R also satisfies  A1A2...An ↠
C1C2...Ck , where the C’s are all attributes of R that are not included 
in the A’s or B’s.

– Thus, if name ↠ street city holds, the complementation rule states 
that name ↠ title year also holds, because street and city are not 
mentioned in the first mvd.  The inferred mvd intuitively means that 
each star has a set of movies that they appeared in, which are 
independent of their address.

Reasoning about Multi-valued Dependencies



COP 4710: Database Systems  (Normalization)              Page 38 Mark Llewellyn ©

• The redundancy that we’ve seen in the relation instances 
in this section of the notes are caused by the existence of 
multi-valued dependencies.

• As we did with functional dependencies, we can use 
multi-valued dependencies and a different decomposition 
algorithm to produce a stronger normal form which is 
based not on functional dependencies but the multi-
valued dependencies.

• Fourth Normal Form (4NF) eliminates all non-trivial 
multi-valued dependencies (as are all fds that violate 
BCNF).  The resulting decomposition scheme has neither 
the redundancy from fds nor redundancy from mvds.

Fourth Normal Form



COP 4710: Database Systems  (Normalization)              Page 39 Mark Llewellyn ©

• A mvd A1A2...An ↠ B1B2...Bm for a relation scheme R is 
non-trivial if:

1. None of the B’s is among the A’s.

2. Not all of the attributes of R are among the A’s and B’s.

• 4NF is essentially the BCNF condition, but applied to 
mvds instead of fds.

• Formally, a relation scheme R is in 4NF if whenever 
A1A2...An ↠ B1B2...Bm is a non-trivial mvd, {A1A2...An}
is a superkey of R.

Fourth Normal Form (cont.)



COP 4710: Database Systems  (Normalization)              Page 40 Mark Llewellyn ©

• The example relation scheme that we have been dealing 
with is not in 4NF because name ↠ street city is a 
non-trivial mvd, yet name by itself is not a superkey.  In 
fact, for this relation the only key is all the attributes.

• 4NF is truly a generalization of BCNF.  Since every fd is 
a mvd, every BCNF violation is also a 4NF violation.  In 
other words, every relation scheme that is in 4NF is 
therefore in BCNF.

• However, there are some relation that are in BCNF but 
not in 4NF.  The relation instance we have been using in 
this section of notes is a case in point.  It is clearly in 
BCNF, yet as we just illustrated, it is not in 4NF.

Fourth Normal Form (cont.)



COP 4710: Database Systems  (Normalization)              Page 41 Mark Llewellyn ©

• The 4NF decomposition algorithm is analogous to the 
3NF and BCNF decomposition algorithm:

• Find a 4NF violation, say A1A2...An ↠ B1B2...Bm where 
{A1A2...An} is not a superkey.  Note that this mvd could 
be a true mvd or it could be derived from the 
corresponding fd A1A2...An → B1B2...Bm , since every fd 
is an mvd.    Then break the schema for R into two 
schemas where: (1) the first schema contains all the A’s 
and B’s and the second schema contains the A’s and all 
the attributes of R that are not among the A’s or B’s.

Decomposition into Fourth Normal Form



COP 4710: Database Systems  (Normalization)              Page 42 Mark Llewellyn ©

• Using our previous example relation that we now know is 
not in 4NF, let’s decompose into a relation schema that is 
in 4NF.

• We know that name ↠ street city is a 4NF violation.  
The original schema R (5 attributes) will be replaced by 
one schema that contains only the three attributes from 
the mvd above, and a second schema that consists of the 
left side of the above mvd plus the attributes that do not 
appear in this mvd, which are the attributes title, and 
year.

R1 = {name, street, city}

R2 = {name, title, year}

Decomposition into Fourth Normal Form (cont.)



COP 4710: Database Systems  (Normalization)              Page 43 Mark Llewellyn ©

R1 = {name, street, city} R2 = {name, title, year}

• In each of these schema there are no non-trivial mvds or 
fds, so they are both in 4NF.  Notice that in the relation 
scheme R1, the mvd name ↠ street city is now trivial 
since it involves every attribute.  Likewise, in R2, the 
mvd name ↠ title year is also trivial.

Decomposition into Fourth Normal Form (cont.)



COP 4710: Database Systems  (Normalization)              Page 44 Mark Llewellyn ©

Summary of Normal Forms

yesyesyesHas the lossless join 
property

maybemaybemaybePreserves multi-valued 
dependencies

maybemaybeyesPreserves functional 
dependencies

yesnono
Eliminates redundancy 

due to multi-valued 
dependencies

yesyesmost
Eliminates redundancy 

due to functional 
dependencies

4NFBCNF3NFProperty


